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Analysis of the Numerical Dispersion of the 2-D
Alternating-Direction Implicit FDTD Method

An Ping Zhag Senior Member, IEEE

Abstract—in this paper, the numerical dispersion property of numerical dispersion error of the method is kept with certain
the two-dimensional alternating-direction implicit finite-difference accuracy.

time-domain (2-D ADI FDTD) method is studied. First, we notice ; Fiti .
that the origirgal 2-D ADI FD'?’D method can be divided into two In this Paper, by reVISltm.g _the principle of the ADI FDTD
sub-ADI FDTD methods: either the z-directional 2-D ADI FDTD ~ Method, we find that the original 2-D ADI FDTD method can
method or the y-directional 2-D ADI FDTD method; and secondly, Pe divided into two sub-ADI FDTD methods due to the spe-
the numerical dispersion relations are derived for both the ADI cial updating procedure used in the method. These two sub-ADI
FDTD methods. Finally, the numerical dispersion errors caused FDTD approaches can especially be named astieectional
by the two ADI FDTD methods are investigated. Numerical fe-  5.p Ap| FDTD method and thg-directional 2-D ADI FDTD
sults indicate that the numerical dispersion error of the ADI FDTD . - . .
methods depends highly on the selected time step and the shape ancme'(hm_j (seg Sect_lon I for details), which _also have (_jn‘ferent
mesh resolution of the unit cell. It is also found that, to ensure the Numerical dispersion relations. The numerical dispersion rela-
numerical dispersion error within certain accuracy, the maximum  tions for the two 2-D ADI FDTD methods are derived. With
time steps allowed to be used in the two ADI FDTD methods are the numerical dispersion relations given in this paper, the nu-
different and they can be numerically determined. merical dispersion errors caused by the ADI FDTD methods

Index Terms—ADI FDTD method, dispersion relation, FDTD  gre investigated and the performances of the two ADI FDTD
method, numerical dispersion. methods are evaluated. Numerical results indicate that the nu-

merical dispersion errors induced by the ADI FDTD methods
l. INTRODUCTION are strongly affected by the selected time step and the shape and

mesh resolution of the unit cell. Consequently, it is revealed that,
0 keep the dispersion error with certain accuracy, the maximum
Ye., up limit) time steps allowed to be used in the ADI FDTD

ethods exist and they can be determined numerically. Empir-
cal formulas that can be used to simply and quickly determine
e maximum time steps for both the andy-directional 2-D

| FDTD methods are particularly given separately for dif-

N THE conventional finite-difference time-domain (FDTD),

method, the time step allowed to be used is bounded
the Courant—Friedrich—Levy (CFL) stability condition. Suc
a condition certainly limits the capability of the traditiona
FDTD method, particularly when applied to problems wher;
a very fine mesh is needed over large geometric areas.
overcome the above drawback, an interesting extensionfg ent cases.
the conventional two-dimensional (2-D) FDTD method was

o ) This paper is organized as follows. In Section I, the disper-
recently proposed by I\_lam|I§| [1]2 Th|§ new _me'thd was namesﬁion relations for both the- andy-directional 2-D ADI FDTD
as the 2-D alternating-direction implicit finite-differenc

Snethods are derived. The numerical dispersion errors caused b
time-domain (2—-D ADI FDTD) method, which is extremely at; P y

. . —.the two ADI FDTD methods are comprehensively studied in
tractive because, compared with the standard FDTD algorith P y

Blction 11l and, finally, conclusions and discussions are made
the ADI FDTD method is unconditionally stable and, thu ' Y.

Sh Section IV.
the CFL stability condition can be eliminated. Although the !

efficiency and accuracy of this new method were demonstrated

[1], [2] under certain circumstances, to have a full evaluation !l- DERIVATION OF THE DISPERSIONRELATIONS FOR

on its performance (in terms of numerical dispersion or phase THE Two 2-D ADI FDTD METHODS

velocity), the numerical dispersion error induced by the methodAs an example, we consider the 2-D TE wave. Maxwell’s
must be studied, and this can be done by solving the coreguation for the TE wave in an isotropic loss-free medium is
sponding numerical dispersion relation. However, it is found]

that the numerical dispersion relation given in [1] was derived

under some assumptions and, thus, it is inaccurate. Therefore, it OF, _10H. (1a)
is essential to find more accurate numerical dispersion relation ot e Oy
before the performance of the ADI FDTD method is evaluated. ok,  10H, 1b
On the other hand, it is also necessary to know how big the 9t e Or (1b)
time step can be selected for the ADI FDTD method while the oH. 1(0E, OE, 10
ot  p\ Oy dz
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Denote any component of the field$,(¢, z, ) in a discrete  Substituting (5) separately into (3a)—(3c) (i.e., the first up-
space as dating procedure), one has

(ej<wm>/2 _ 1) E"

FR(i,J) = Fo (nAt,iAz, j Ay) (2)
AN L (RAy "

wherea = z ory, n is time and; and; are space indexeAt is = <@> St <T> H
the time step, anc\z and Ay are the spatial increments along (6a)
the z- andy-directions, respectively. JlwAt)/2 1) B

According to the principle of the ADI FDTD method [1], (e y
the FDTD solution marching from theth time step to the _ (AN . (kA J(wat)/2 g 6b
(n 4+ Dth time step is broken into two sub-updating procedures: AT A c # (6b)
the first updating procedure involves the advancement from iwan/2 _ 1\ gn
the nth time step to thes( + 1/2)th time step, whereas in the (C ) #
second updating procedure, the fields are advanced from the At . kyAy [ At
(n + 1/2)th time step to ther{ + 1)th time step. Since in the = <@) Stk <T> T <m>
ADI FDTD method all the field components are defined at (kAT oange
n (n + 1/2) and @ + 1), time steps and two sub-updating si < )CJ YRy (6¢)

procedures are involved, therefore, we have two different ways o ) )
to accomplish the first and second updating procedures for #{B€reas substituting (5) separately into (4a)—(4c) (i.e., the
field components. Here, we use thg-field component as an S€cond updating procedure), one obtains

example to explain why we have two different ways or cases: (eijt _ ej(wAt)/Q) En

1) Ex*Y/2 can be updated from&?, H”) in the first updating ’

procedure, whereag"+! is updated from . +Y/2 Hr+1) =-J < X )Sin <kyAy> et (72)
in the second updating procedure andEZ)+1/2 is updated eAy 2 -

from (E7, H'T/?) in the first updating procedure, while (eijt_ej(wAtW) E"

ET™+L is updated from £2 /2 HIT?). Therefore, in the !

first case,Ex /% can be updated directly anB"*+! cannot, = <ﬁ> sin <k“”A$> elwan/2gn (7b)
but in the second casE;?“/ % cannot be directly updated Az 2

and E™t1 can. Due to the above reason, the above two cases (6’““ — edwan/ 2) H?

should be considered separately. We define the first case as the /At (kAN a

x-directional 2-D ADI FDTD method and the second case as =—J <T> sin <T> I I

the y-directional 2-D ADI FDTD method. It should be noted NAEJ

that, according to our definition, the approach used in [1] +3 <_> sin <k7‘A“’> ej(wAt)/2E; (7¢)

belongs to ther-directional 2-D ADI FDTD method. In what pAzx 2

follows, the numerical dispersion relations for the two AD{yherej = \/=1. Combining (6a) and (7a), (6b) and (7b), as

FDTD methods will be derived separately. well as (6¢) and (7c), respectively, yields the following relations
for £, E), andH]:

A. z-Directional 2-D ADI FDTD Method (95t — 1) BT

For the z-directional ADI FDTD method, the two sub-up- AN . (RAYN o .
dating procedures are shown in (3a)—(4c) at the bottom of the= —J <@> sin < 5 ) (61 + 1) H
following page [1]. Equations (3) and (4) are, respectively, for JoAt n

the first and second updating procedures ofitfdérection ADI (e - 1) By

FDTD method. =25 <ﬁ> sin <#) efwan/2gn (8b)

(8a)

The trial solution of the fields for the TE wave is [3] eAx
(e"“At 1) H?
E;L I, J)=E, ej(wnAtkaIAacfkyJAy) A A ' A
(D e Ty ) =—J 28 ) gin kaAy (/1) En42j o
:Eme VANAES ¥ Yy (5a) NAZJ 2 x [,LA.T
n _ jlendAt—k, IAx—k, JA,
By (1, 1) =Eu CJ(, R -sin <_k,;Aa:> e/ wAn/2pn. (8¢c)
:E;C—](k‘w TAz+k, JAy) (Sb) 2
HMI,J) =H., ¢/Wnat—keIAz—ky J2u) Equation (8) can be simplified as
_gn —jlke TAn4k, JA .
=H"¢ J( y) (5¢) sin wAt B At sin kyAy cos wAEL ur
2 * eAy 2 2 g
wherel and.J are the space indexes andk the time indexk,, (9a)

andk, are, respectively, the numerical wavenumbers inithe . /wAt\ . ( At \ . (k. Ax I %
andy-directions, andv is the wave angle frequency. S T v “\eag )™M T2 2 (9b)
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cin <W_At> HM = — < At ) cin <kyAy> cos <W_At> o_f the matrix A equal to zero. After some manipulation, this
2 HAY 2 2 yields
o At (kA L, 1, (kAx wAt\ 1, [(k,Ay
E + <uAa:> sm< . ) ET. (9) e sin? < : ) + cos? < : ) e sin? < = )
. . . . . 1 g (WAL
By denoting the field vector in the spatial spectral domain at = (cAf)? sin < 5 ) (13)
thenth time step as
wherec = 1/, /epiis the speed of light in the medium. Equation
En (13) is the numerical dispersion relation for the TE wave of the
X" — Ef‘ (10) z-directional ADI FDTD method. With the derivation procedure
H% similar to the above, one can prove that (13) is also the numerical
* dispersion relation for the TM wave.
(10) can be written in a matrix form as B. y-Directional 2-D ADI FDTD Method
For they-directional ADI FDTD method, the two sub-up-
AX" =0 (11) dating procedures are shown in (14a)—(15c) at the bottom of

the following page. Equations (14) and (15) are, respectively,
andA, shown in (12) at the bottom of the following page. Théor the first and second updating procedures ofittkrectional
numerical dispersion relation is found by setting the determina&bl FDTD method. With the derivation procedure similar to

1 1 1.1 1.1
EVE iy s i) B i+ 2. H i+ j+2)—H [i+2,5-2
L+2,J g L+2,J 1 2 L+2,J+2 z L+2,J 5

At e Ay (3a)
2
B2 <i,j+ %) ~Ep <LJ + %) L HE <L + %J + %) — g2 <L - %J + %)
SR 3b)
At € Az (
2
HITY? <i+ %,j+ ;) H? <i+ %,H %) || B <i+ %,j+1> - E? <i+ %J)
At Tn Ay
2
gr2 1 nttj2 .1
Y <L+1,J+§>—Ey <L,J+§>
- s (3¢c)
Bl <L + l,j) — Byt <L + 1,]) Hrl <L N 1) — HrH <L ey 1)
27) 1 27" 2 277 2 (42)
At € Ay
2
Byt <L1 + %) - By <L1 + %) L |EE <L + %1 + %) —HITY? <L - %1 + %)
__ 2 (4b)
At € Ax
2
(i) (s haed) [ () - o)
At T Ay
2
gr2 o1 nttj2 (.1
Y <L+17‘1+§> - Ey <57J+§>
— (4c)

Ax
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that used for the:-directional ADI FDTD method, one can ob- On the other hand, it was proven [3] that the numerical dis-
tain the numerical dispersion relation for both the TE and Tldersion relation of the standard 2-D FDTD method is

waves of they-directional ADI FDTD method as 1 (koA 1 (kA
Sin Sin e
(Az)? 2 (Ay)? 2
< 2 )(Aw?sm( 2 )T\ T2 (cAt)? > ) 4D

1 .o [ WAL 16 Comparing the numerical dispersion relations [i.e., (13) and
T ean?™ 2 (16)  (16)] of the 2-D ADI FDTD methods with that [i.e., (17)]

. <wAt> < At ) . </€yAy> <wAt>
sin | — 0 sin cos
2 eAy 2 2

A= 0 sin <wTAt> — < At ) sin <k$A$> (12)

2
At . kyAy wAt At . [ kAx . [ wAt
—— | sin cos | — — | —— ) sin sin [ —
WAy 2 2 BAT 2 2

PEEYL (RN S W R RN SN S e 2] T I
Es <L+27J> Ex<ﬁ+2,J> 1 | H= <L+27J+2 H; 1450 5

== 14a
A . = (142)
2
n L1 L1 o011 11
EyH/2 Li+ o) —E) i)+ H i+ 5. i+5 ) -H)(1—5.0+5
2 ¥ 2 __1 2 2 2 2 (14b)
At T e Az
2
n o1 . o1 n . . n .
HZ+1/2<'L—|—§,]+§)—Hf<z+§,j+§> 1 Eac+l/2<'l'+_7j+1>_Eac+l/2<'l'+ ,J)
& =3 Ay
2
nf o1 mf. . 1
Ejli+lj+5 ) —E)|\6J+5
_ 2 2 (14c)
Az
7 . . T . . T . 1
E;L+1 i+ _7j - E$+1/2 14,7 HZ+1/2 t+ -0+ 5 HZ+1/2 t+ 00— 5
2 27) 1 27" 2 277 2 (153)
At T e Ay
2
1 n o1 o101 1 1
E;H—l L7J+_ Ey+l/2 Zvj+_ H2+1 Z+_7J+_ _HZH—I L__7J+_
__1 2 2 2 2 (15b)
At T e Az
2
. . n . . 1 X232 . . X232 .
H;l-f'l <Z+ 577 + 5) _HZ+1/2 <Z+ 577 + 5) 1 EJ:+1/2 <Z+ 577 +1> _El‘+l/2 <7’+ 571)
5 =3 Ay
2
1 1
Byt <z’+ 1j+ 5) - Byt (i,j+ 5)
_ (15¢)

Az
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of the standard 2-D FDTD method, one can easily notiée (13) and (16). To solve (13) and (16), let us assume that wave
the difference between them: in (13), one extra term, i.@ropagates at an angfewith respect to the positive-direc-
cos?(wAt/2), imposes on the wavenumbéy,, whereas in tion (i.e.,k, = kcosf andk, = ksin#é), thus the numerical
(16), the extra term imposes on the wavenumberin other solution of the wavenumbér can be easily obtained with the
words, the wavenumbét, in (13) is “unaffected” (this is why Newton’s iteration method for a given set of parametars

we named it as the-directional 2-D ADI FDTD method), and Ay, At, andé. Particularly, for ther-directional ADI FDTD

the wavenumbek, in (16) is “uninfluenced” (this is why we method, (13) can be solved for the numerical wavenurkar
called it they-directional 2-D ADI FDTD method). However, any wave propagation angteas

it should be pointed out here that dividing the original 2-D

ADI FDTD method into the above two different approaches sin®(Ak;) 4 cos? <W_At> sin’(Bki)
(i.e., thex- andy-directional 2-D ADI FDTD methods) is also o — I (Ax)? 2 (Ay)?
motivated by the two different three-dimensional (3-D) ADI ““** = ™ ™ Aqin(2Ak;) , (wAt\ Bsin(2Bk;)
FDTD algorithms [4], [5]. For example, the-directional 2-D W + < 2 ) (Ay)?

ADI FDTD method can be directly reduced from the 3-D ADI (20)

FDTD algorithm [5] and they-directional 2-D ADI FDTD whereas for the/-directional ADI FDTD method, (16) can be

method can be directly derived from the 3-D ADI FDTDsolved for the numerical wavenumbeat any wave propagation

approach [4]. Nevertheless, it should be noted that the 3-D ABhglef as

FDTD approaches [4], [5] cannot be simply defined as either

the z-directional ory-directional 3-D ADI FDTD method, as cos? (wAt) sin?(Ak;)  sin?(Bk;)

in the 3-D case, one more direction (i.e., thalirection) is bt — ke 2 (Az)? (Ay)?

involved in the updating equations. il = , (wAt\ Asin(2Ak;) | Bsin(2Bk;)
Itis apparent that wheAt, Az, andAy all go to zero, the nu- cos < 2 ) (Az)? (Ay)?

merical dispersion relations [i.e., (13) and (16)] of the two 2-D (21)

ADI FDTD methods will convert to the theoretical dispersion

relation In addition, to evaluate the performances of the ADI FDTD
w2 ) methods, it is also necessary to compare them with the nu-
— =k (18) merical dispersion property of the conventional 2-D FDTD
method, and the numerical wavenumber the conventional
wherek = (w/c) is the theoretical wavenumber. 2-D FDTD method can be solved with [3]
The numerical dispersion relation given in [1] (note: there is

also a printing error in [1, eq. (19)]) is sin?(Ak;) = sin?(Bk;) _c
g (Aa)? (Ay)?
(Al E sin? <’%2A”f> n (Al E sin? <@) R =k - S ARy Bso@Bh) 2
’ ! (Az)? (By)?

-C

k? Iﬂ}?:
T y c

-4 sin? <w_t> cos™! <LAt> (29)
~ (cAt)? 4 2 ) wherek;1; is the improved estimate df;, k; is the previous

As explained earlier, the ADI FDTD algorithm used in [l]estlmate of:, andthe coefficientsl, B, andC’ used in (20)~(22)

belongs to the:-directional 2-D ADI FDTD method. This also are defined as

means that (19) relates to the numerical dispersion relation of Az cosf

the z-directional ADI FDTD method and, thus, (13) and (19) A= 2

can be compared. By comparing (13) with (19), one can easily B _ Aysin@

notice the significant difference between them. However, it -2

should be noticed that (19) was derived under the assumption o .o WAL 23)
that the growth factors of the first and second updating proce- T (cAt)? St 2 /°

dures are always identical (i.€; = &, see [1] for details).

On the other hand, the correctness of the expressions usedHar (20)—(22), a very good initial guess fbi_o is w/c, which

E., E,andH, (see [1, egs. (7) and (8)]) in [1] is questionableis the theoretical wavenumber [as shown in (18)] of the corre-
However, the trial solutions of’,., £, andH., [i.e., (5)] used sponding mode in the medium [3]. Therefore, it is easily shown
in this paper are suitable for all kinds of FDTD methods [3that the normalized numerical phase veloeityc is given by
This is why we claimed that the numerical dispersion relations

of the 2-D ADI FDTD methods derived in this paper are more Yp ko w (24)

accurate and reasonable than the one given in [1]. ¢ kanar  ckanal

whereksn. is the final result of the Newton'’s iteration method
lll. NUMERICAL DISPERSIONPROPERTIES OF THE andk(= w/c) is, again, the theoretical wavenumber. Usually,
ADI FDTD METHODS only two or three iterations are required for convergence.
The numerical dispersion characteristics of the ADI FDTD If within the entire computational region the 2-D FDTD unit
methods can be studied by solving the dispersion relations givamll is defined by Az x Ay), then the time step used in the
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o
©
©
[3)

" [—— FDTD: CFLN=0.05
0.981- —— FDTD: CFLN=1.0

Normalized phase velocity, Vp/c
[=]
©
[+2)
a
Normalized phase velocity, Vp/c

-0~ X/Y-ADI FDTD: CFLN=0.05 — Eglg: gitm=?.gs
—— X-ADI FDTD: CFLN=1.0 7 — : =1
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—— Y-AD| FDTD: CFLN=1.0 0.986] © | 0~ X-ADI FDTD: CFLN=15 ‘ 4
0.97r —%— Y-ADI FDTD: CFLN=1.132 : —5— Y-ADI FDTD: CFLN=1.0 .
—%— Y-ADI FDTD: CFLN=1.5 : n .| = Y-ADIFDTD: CFLN=1.5 :
0.965 i i i i i i ; i 0.984 i i i i i i i i
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Theta (degrees) Theta (degrees)
(@) (b)
1,002 , . " , , r r T
1 -
© : : : z o
3 7 v
>0.999F - e
> : : : : : :
‘© . : N
©0.998L .- r - T 7. = g - o .
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> . . . M .
[}] . .
30_997’:_. R i CH e =
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Fig. 1. Normalized phase velocity of the and y-directional ADI FDTD methods as functions of the CFLN. Mesh resolutioVis= 20. (a) R = 0.5.
(b) R = 1.0. (c) R = 5.0.

standard 2-D FDTD method is bounded by the following CFL The normalized phase velocities (i.e,/c) of the z- and

condition [3]: y-directional 2-D ADI FDTD methods for the casé&s= 0.5,
FDTD 1 R = 1.0, andR = 5.0 (for all the cases, the mesh resolution
At < Abyay -~ = 1 T (29) jsn = 20) are shown in Fig. 1(a)—(c), respectively. For com-
¢ W + W parison, the normalized phase velocities of the standard FDTD

method are also plotted in Fig. 1. It can be seen from Fig. 1
of At/ADTD as the CFL number (CFLN) ierat{Rat, for any values of, the normalized phase velocities of
CFLN  — HZ}Z/AtFDTD' and the shape of the 2—D’FD.TI.3'the standard FDTD method and the two ADI FDTD methods
max overlap each other when the CFLN closes to zero, for instance,
tlhey are almost indistinguishable everC&LN = 0.05 [note:

To make the discussion easier, we define the

unit cell is described by another rattb= Az/Ay. In addition,

for the definition of the mesh resolution used in this pape .
we defineAz = A/N (where A is the operating frequency a1th9ugh for the cas€FLN = 0.05 the normalized phase_ ve
and N > 10) as the different mesh resolution of the unit celll.(,)Cltles of the two ADI FDTD methods are not exactly iden-

For example, if we have? = 5 and N = 15 for the unit tical, the difference between them is extremely small and, thus,
cell, then the sizes of this unit cell in the andy-directions ONly One curve is used to represent the results of both the ADI
areAz = A\/15 andAy = Az/R = )\/75, respectively. FDTD methods, as shown in Fig. 1(a).-(c)]. Since the normal-
Moreover, if the mesh resolution i = 20, then the smallest 1zed phase velocities vary very much with the arglso should
value of R is 0.5 since, to ensure the accuracy of the FDTHe performance of the FDTD methods be determined or eval-
method, the spatial increment (eith&r: or Ay) should not be uated by the maximum absolute value df{ v, /c) within the
greater tham\/10. Due to the same reason, the smallest val@tire range of.. For example, when the parametéts= 0.5

of Ris 0.25 if the mesh resolution & = 40. andCFLN = 1.5 are used for the:-directional ADI FDTD
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method, the maximum absolute value af v, /c) occurs at 25

# = 90°, as can be seen in Fig. 1(a). With this criterion, one
can see from Fig. 1 that, for any values®f the best perfor-
mance of the conventional FDTD method is reached when th %
value of CFLN is 1.0 and its worst performance appears whe|§ :
the value of CFLN closes to zero. However, for the ADI FDTD < 1sf...:if: [0
methods, the situation is more complicated and the performanc
is strongly influenced by the value &t (i.e., the shape of the
unit cell). For example, for the cage= 0.5, one can see from
Fig. 1(a) that the performance of thedirectional ADI FDTD
method is continuously getting worse while CFLN is increasec g
and, thus, the best performance is reached when CFLN clos(s o5t
to zero. However, for the-directional ADI FDTD method, the
performance gets better first and then worse while CFLN in- L & § o i @ @ & @ i @ 6 i i i
creases (from 0.05) and the best performance is reached whi ' 2 3 4 5 6 7 89 10 111213 14 15 16 17 18 19 20
CFLN = 1.132, i.e., when the profile of the normalized phase
velocity is symmetric [i.e.y,/c(8) = v,/c(90° — 8)] about

the angled = 45°. Therefore, for both the- andy-directional

ADI FDTD methods, we may conclude that: 1) if the perfor-
mance always gets worst while CFLN increases, then the be 5
performance is obtained when the CFLN closes to 0.0 or 2) if the f 157
performance gets better first (and then worse) when the CFLIE
increases, then the best performance is reached when the p@'
file of v,/c is symmetric about the angte = 45°. With the
above remarks for the ADI FDTD methods, one can see fron
Fig. 1(b) that, for theR = 1.0 case, the best performances of
the two ADI FDTD methods are reached when the CFLN close:
to zero, but for the cask = 5.0, the best performances of the
andy-directional ADI FDTD methods are, respectively, reached =
when the CFLN equals to 2.89 and closes to 0.0, as shown i

Fig. 1(c). In addition, it is interesting to note from Fig. 1 that, = o—ti—1 S S S S S O S S
0 4 6 8 10 12 14 16 18 20 22 24 26 28 30
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for R with a certain value, there are some special direction: CFLN
for the z- andy-directional ADI FDTD methods: the value of (b)

the nom_]ahzed phase velocity of thedirectional ADI_ FDT_D Fig. 2. Maximum dispersion errors of thedirectional ADI FDTD method
method is almost unchanged around the propagation directigslid curves) and the-directional ADI FDTD method (dashed curves) as
6 = 35.5° even when CFLN varies; whereas for thalirec- functions of the CFLN andR. (a) Mesh resolutionN = 20. (b) Mesh

[ ial di N i ion:N = 40.
tional ADI FDTD method, such a special direction is around thrgSOIUtlon 0

directionf = 54.5°. This indicates that, if one wants to use th(1=?O the R < 1.0 case, the performance of thedirectional ADI
recorded field profile to evaluate the performance (as function EéTD methdd is coﬁtinuously getting worst when the CFLN is

the CFLN) of the ADI FDTD methods (like the manner used iﬂwcreased. However, for thedirectional ADI FDTD method,
[2]), then the field profile should not be recorded around thegge performance is getting better first and then worse while the
two special directions; and it is recommended to use the fig}e| N is increased. However, for te > 1.0 case, the situation
profile recorded at the directigh= 0° or§ = 90° forthe evalu- for the two ADI FDTD methods is just reversed and the best
ation, as the worst performance of both the ADI FDTD methocﬂferformance of the--directional ADI FDTD method appears
always appears at either the= 0° or 6 = 90° direction. at CFLN = 0.58R. In addition, it can also be seen from Fig. 2
To further demonstrate that the numerical dispersion errdtst, to have a fixed accuracy, the maximum values of the CFLN
caused by the ADI FDTD methods are highly influenced by thedlowed to be used for the ADI FDTD methods cannot exceed
shape and mesh resolution of the unit cell as well as the valueceftain levels, which certainly indicates that an up limit for the
CFLN, the maximum dispersion errors [i.e., absolute value &fFLN exists.
(1 —v,/c)] of the two ADI FDTD methods are shown in Fig. 2, Fig. 3(a) and (b) shows the maximum values of the CFLN
where the results plotted in Fig. 2(a) and (b) are for the me&s functions ofR and N) allowed to be used in the ADI
resolutionV = 20 and N = 40, respectively. Note that for the FDTD methods when the required accuracy is, respectively,
results shown in Fig. 2, we consider only tHBELLN > 1.0 cases set to be 1.0% and 0.5%. It can be found from Fig. 3(a) and
due to the original purpose of the ADI FDTD method. Fronfb) that, for theR > 1.0 case, the maximum value of the
Fig. 2, one can see that, for tie= 1.0 case, the performancesCFLN allowed to be used in the-directional ADI FDTD
of the two ADI FDTD methods are exactly identical. Moreovemethod is always greater than that of thelirectional ADI
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Fig. 3. Maximum CFLN allowed to be used in thedirectional ADI FDTD
method (solid lines) and thg-direction ADI FDTD method (dashed lines) as

20

one can have the following empirical formulas to simply
and quickly determine the maximum allowed values of the
CFLN: the maximum values of the CFLN are, respectively,
bounded byCFLN < (NR)/18.1 = (ApnnR)/(18.1Az)
andCFLN < (NR)/25.6 = (A\uinR)/(25.6Az) when the
required accuracy is set to be 1.0% and 0.5%. The above two
formulas used for the-directional ADI FDTD method work
well for both the N = 20 and N = 40 cases. However, as
can be seen from Fig. 3, for thedirectional ADI FDTD
method, no such common empirical formulas can be found,
which means that different empirical formulas must be used
for different cases (i.e., with different required accuracies,
as well as different mesh resolutions). For examples, when
the required accuracy is set to be 1.0% for thdirectional
ADI FDTD method, the maximum values of the CFLN for
the mesh resolutiony = 20 and N = 40 are, respec-
tively, bounded byCFLN < (NR)/23.6 = R/1.18 and
CFLN < (NR)/19.2 = R/0.48; and while the required
accuracy is set to be 0.5%, the maximum values of the
CFLN are bounded by’FLN < (NR)/62 = R/3.1 and
CFLN < (NR)/28.8 = R/0.72 for the mesh resolutions
N = 20 and N = 40, respectively. Finally, it is worth men-
tioning that all the above empirical formulas work well only
when the condition® > 1.0 and (the predicated)FLN > 1.0

are simultaneouslsatisfied. This means that, for instance, if
the required accuracy is set to be 0.5% for thdirectional
ADI FDTD method withiN = 20, then the smallest value @t
allowed to be used in the empirical formula is 3.1.

IV. CONCLUSIONS ANDDISCUSSIONS

In this paper, we first found that the original 2-D ADI FDTD
method can be classified as thelirectional 2-D ADI FDTD
method and they-directional 2-D ADI FDTD method due to
the special updating procedure used in the ADI FDTD tech-
nique. Consequently, more accurate and reasonable (comparing

functions ofR and N. (a) With accuracy of 1.0%. (b) With accuracy of 0.5%. t0 the one presented in [1]) numerical dispersion relations for

both the ADI FDTD methods were derived. With the numerical

FDTD method, and vice versa for the < 1.0 case. This dispersion relations given in this paper, the numerical dispersion
certainly means that, to increase the efficiency of the Alroperty of the 2-D ADI FDTD methods was comprehensively
FDTD methods, the:-directional ADI FDTD method should studied. Numerical results indicate that the numerical disper-
be used for the? > 1.0 case and thg-directional ADI FDTD sion errors caused by the 2-D ADI FDTD methods are highly
method should be adopted for thie < 1.0 case. However, affected by the selected time step, shape, and mesh resolution

if for the unit cell we haveR = 1.0, then either ther- or

of the unit cell. Moreover, it reveals that, to keep numerical re-

y-directional ADI FDTD method can be used, as they have tisallts obtained with the 2-D ADI FDTD methods within certain

same performance. This implies that whetherthdirectional

accuracy, the up limit for the time step exists and, consequently,

ADI FDTD method or they-directional ADI FDTD method it can be numerically determined with the empirical formulas
should be adopted depends on how the computational spacgiven in this paper. Furthermore, how the efficiency of the 2-D
meshed. In addition, it can also be found from Fig. 3(a) ar&DI FDTD methods can be increased is also briefly discussed.
(b) that, for the same mesh resolution, the maximum allowdualaddition, it needs to be pointed out here that the strategy used
value of the CFLN gets greater whéhincreases, and for the in this paper for determining the up limit of the 2-D ADI FDTD
same value of, the maximum allowed value of the CFLNmethods can also be applied to the 3-D ADI FDTD method, but
gets bigger when the mesh resolution increases. This indicdi@msthe 3-D case, one extra parameter should be adopted to de-
that, compared to the standard FDTD method, the ADI FDT&xribe the shape of the 3-D FDTD unit cell.

method is more efficient (in terms of saving CPU tinwajly

From the materials presented in this paper and elsewhere [1],

when the value oft is relatively big and/or the mesh resolutior{4], [6], one can easily realize that the derivation of the numer-
of the smallest unit cell is fairly high. Consequently, it is foundcal dispersion relations and the proof of the numerical stability
from Fig. 3 that, for thez-directional ADI FDTD method, for the ADI FDTD method are more difficult than those for
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the standard FDTD method due to the complexity of the ADI [3] A. Taflove, Computational Electromagnetics—The Finite-Difference
FDTD method. Thus far, two different ways for deriving the ” 'I'mzer;DomaZ'” '\éﬁthﬂd N(;’”JNOZ‘:{ MA: ATfteCh (';‘:rl:sea199l5- Cof

- . . . . eng, Z. en, and J. Zhang, “Towar e development of a
numerical dlsperS|on relathns _Of the ADI FDTD method have three-dimensional unconditionally stable finite-difference time-domain
been proposed; and the main difference between these two ways method,”[EEE Trans. Microwave Theory Teckiol. 48, pp. 15501558,
is the derivation procedure is started from either the original  Sept. 2000.

updating equations (as used in [1] and here for the 2-D Case;S] T. Namiki, “3-D ADI-FDTD method—unconditionally stable time-
domain algorithm for solving full vector Maxwell's equationsEEE

or the actual updating equations (as used in [6] for the 3-D Trans. Microwave Theory Techol. 48, pp. 1743-1748, Oct. 2000.
case). Beginning the derivation procedure from the actual up{6] F. zheng and Z. Chen, “Numerical dispersion analysis of the uncondi-
dating equations might be more reasonable than that from the tionally stable 3D ADI-FDTD method/EEE Trans. Microwave Theory
original updating equations. Therefore, as the next step for the ~ T6¢M: vol- 49, pp. 1006-1009, May 2001.

numerical dispersion analysis of the 2-D ADI FDTD methods,
investigations on the derivation of the numerical dispersion re-
lations from their actual updating equations will be carried out.
Obviously, the format of the numerical dispersion relations (of
the 2-D ADI FDTD methods) derived from the actual updatin
equations will be more complicated than the one given in th
paper. However, the numerical dispersion relations derived frc
the above different ways might be closely related, e.g., th
are convertible from one to another under certain conditions/:
sumptions or they provide similar results. On the other han
the theoretical prediction on the numerigal di;persion errors searcher at the Changchun Institute of Physics.
the 2-D ADI FDTD methods presentEd in this paper needs In January 1990, he joined the Department of

be validated with numerical simulations, which is also left foflectronic and Electrical Engineering, Surrey University, Surrey, UK., as a
future work Visiting Research Fellow, where he was involved with the computer verification
’ of optical waveguide characteristics based on multiple-quantum-well (MWQ)
structures in I1I-V semiconductor materials. In September 1994, he joined the
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implicit method,” [EEE Trans. Microwave Theory Tectvol. 47, pp.  with the FDTD method. Since October 1997, he has been a Senior Research
2003-2007, Oct. 1999. Engineer with the Electronics Laboratory, Nokia Research Centre, Helsinki,
[2] T. Namiki and K. Ito, “Investigation of the numerical errors of theFinland. His research interests include numerical modeling of microwave and
two-dimensional ADI-FDTD methodJEEE Trans. Microwave Theory millimeter-wave circuits and antenna design for wireless communications. He
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