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Abstract—In this paper, the numerical dispersion property of
the two-dimensional alternating-direction implicit finite-difference
time-domain (2-D ADI FDTD) method is studied. First, we notice
that the original 2-D ADI FDTD method can be divided into two
sub-ADI FDTD methods: either the -directional 2-D ADI FDTD
method or the -directional 2-D ADI FDTD method; and secondly,
the numerical dispersion relations are derived for both the ADI
FDTD methods. Finally, the numerical dispersion errors caused
by the two ADI FDTD methods are investigated. Numerical re-
sults indicate that the numerical dispersion error of the ADI FDTD
methods depends highly on the selected time step and the shape and
mesh resolution of the unit cell. It is also found that, to ensure the
numerical dispersion error within certain accuracy, the maximum
time steps allowed to be used in the two ADI FDTD methods are
different and they can be numerically determined.

Index Terms—ADI FDTD method, dispersion relation, FDTD
method, numerical dispersion.

I. INTRODUCTION

I N THE conventional finite-difference time-domain (FDTD)
method, the time step allowed to be used is bounded by

the Courant–Friedrich–Levy (CFL) stability condition. Such
a condition certainly limits the capability of the traditional
FDTD method, particularly when applied to problems where
a very fine mesh is needed over large geometric areas. To
overcome the above drawback, an interesting extension of
the conventional two-dimensional (2-D) FDTD method was
recently proposed by Namiki [1]. This new method was named
as the 2–D alternating-direction implicit finite-difference
time-domain (2–D ADI FDTD) method, which is extremely at-
tractive because, compared with the standard FDTD algorithm,
the ADI FDTD method is unconditionally stable and, thus,
the CFL stability condition can be eliminated. Although the
efficiency and accuracy of this new method were demonstrated
[1], [2] under certain circumstances, to have a full evaluation
on its performance (in terms of numerical dispersion or phase
velocity), the numerical dispersion error induced by the method
must be studied, and this can be done by solving the corre-
sponding numerical dispersion relation. However, it is found
that the numerical dispersion relation given in [1] was derived
under some assumptions and, thus, it is inaccurate. Therefore, it
is essential to find more accurate numerical dispersion relation
before the performance of the ADI FDTD method is evaluated.
On the other hand, it is also necessary to know how big the
time step can be selected for the ADI FDTD method while the
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numerical dispersion error of the method is kept with certain
accuracy.

In this paper, by revisiting the principle of the ADI FDTD
method, we find that the original 2-D ADI FDTD method can
be divided into two sub-ADI FDTD methods due to the spe-
cial updating procedure used in the method. These two sub-ADI
FDTD approaches can especially be named as the-directional
2-D ADI FDTD method and the-directional 2-D ADI FDTD
method (see Section II for details), which also have different
numerical dispersion relations. The numerical dispersion rela-
tions for the two 2-D ADI FDTD methods are derived. With
the numerical dispersion relations given in this paper, the nu-
merical dispersion errors caused by the ADI FDTD methods
are investigated and the performances of the two ADI FDTD
methods are evaluated. Numerical results indicate that the nu-
merical dispersion errors induced by the ADI FDTD methods
are strongly affected by the selected time step and the shape and
mesh resolution of the unit cell. Consequently, it is revealed that,
to keep the dispersion error with certain accuracy, the maximum
(i.e., up limit) time steps allowed to be used in the ADI FDTD
methods exist and they can be determined numerically. Empir-
ical formulas that can be used to simply and quickly determine
the maximum time steps for both the- and -directional 2-D
ADI FDTD methods are particularly given separately for dif-
ferent cases.

This paper is organized as follows. In Section II, the disper-
sion relations for both the- and -directional 2-D ADI FDTD
methods are derived. The numerical dispersion errors caused by
the two ADI FDTD methods are comprehensively studied in
Section III and, finally, conclusions and discussions are made
in Section IV.

II. DERIVATION OF THE DISPERSIONRELATIONS FOR

THE TWO 2-D ADI FDTD METHODS

As an example, we consider the 2-D TE wave. Maxwell’s
equation for the TE wave in an isotropic loss-free medium is
[3]

(1a)

(1b)

(1c)

where and are the permittivity and permeability of the
medium, respectively.
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Denote any component of the fields in a discrete
space as

(2)

where or , is time and and are space indexes, is
the time step, and and are the spatial increments along
the - and -directions, respectively.

According to the principle of the ADI FDTD method [1],
the FDTD solution marching from theth time step to the
( )th time step is broken into two sub-updating procedures:
the first updating procedure involves the advancement from
the th time step to the ( )th time step, whereas in the
second updating procedure, the fields are advanced from the
( )th time step to the ( )th time step. Since in the
ADI FDTD method all the field components are defined at

( ) and ( ), time steps and two sub-updating
procedures are involved, therefore, we have two different ways
to accomplish the first and second updating procedures for the
field components. Here, we use the-field component as an
example to explain why we have two different ways or cases:
1) can be updated from ( ) in the first updating
procedure, whereas is updated from ( )
in the second updating procedure and 2) is updated
from ( ) in the first updating procedure, while

is updated from ( ). Therefore, in the
first case, can be updated directly and cannot,
but in the second case, cannot be directly updated
and can. Due to the above reason, the above two cases
should be considered separately. We define the first case as the

-directional 2-D ADI FDTD method and the second case as
the -directional 2-D ADI FDTD method. It should be noted
that, according to our definition, the approach used in [1]
belongs to the -directional 2-D ADI FDTD method. In what
follows, the numerical dispersion relations for the two ADI
FDTD methods will be derived separately.

A. -Directional 2-D ADI FDTD Method

For the -directional ADI FDTD method, the two sub-up-
dating procedures are shown in (3a)–(4c) at the bottom of the
following page [1]. Equations (3) and (4) are, respectively, for
the first and second updating procedures of the-direction ADI
FDTD method.

The trial solution of the fields for the TE wave is [3]

(5a)

(5b)

(5c)

where and are the space indexes andis the time index,
and are, respectively, the numerical wavenumbers in the-
and -directions, and is the wave angle frequency.

Substituting (5) separately into (3a)–(3c) (i.e., the first up-
dating procedure), one has

(6a)

(6b)

(6c)

whereas substituting (5) separately into (4a)–(4c) (i.e., the
second updating procedure), one obtains

(7a)

(7b)

(7c)

where . Combining (6a) and (7a), (6b) and (7b), as
well as (6c) and (7c), respectively, yields the following relations
for , , and :

(8a)

(8b)

(8c)

Equation (8) can be simplified as

(9a)

(9b)
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(9c)

By denoting the field vector in the spatial spectral domain at
the th time step as

(10)

(10) can be written in a matrix form as

(11)

and , shown in (12) at the bottom of the following page. The
numerical dispersion relation is found by setting the determinant

of the matrix equal to zero. After some manipulation, this
yields

(13)

where is the speed of light in the medium. Equation
(13) is the numerical dispersion relation for the TE wave of the

-directional ADI FDTD method. With the derivation procedure
similar to the above, one can prove that (13) is also the numerical
dispersion relation for the TM wave.

B. -Directional 2-D ADI FDTD Method

For the -directional ADI FDTD method, the two sub-up-
dating procedures are shown in (14a)–(15c) at the bottom of
the following page. Equations (14) and (15) are, respectively,
for the first and second updating procedures of the-directional
ADI FDTD method. With the derivation procedure similar to

(3a)

(3b)

(3c)

(4a)

(4b)

(4c)
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that used for the -directional ADI FDTD method, one can ob-
tain the numerical dispersion relation for both the TE and TM
waves of the -directional ADI FDTD method as

(16)

On the other hand, it was proven [3] that the numerical dis-
persion relation of the standard 2-D FDTD method is

(17)

Comparing the numerical dispersion relations [i.e., (13) and
(16)] of the 2-D ADI FDTD methods with that [i.e., (17)]

(12)

(14a)

(14b)

(14c)

(15a)

(15b)

(15c)
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of the standard 2-D FDTD method, one can easily notice
the difference between them: in (13), one extra term, i.e.,

, imposes on the wavenumber , whereas in
(16), the extra term imposes on the wavenumber. In other
words, the wavenumber in (13) is “unaffected” (this is why
we named it as the-directional 2-D ADI FDTD method), and
the wavenumber in (16) is “uninfluenced” (this is why we
called it the -directional 2-D ADI FDTD method). However,
it should be pointed out here that dividing the original 2-D
ADI FDTD method into the above two different approaches
(i.e., the - and -directional 2-D ADI FDTD methods) is also
motivated by the two different three-dimensional (3-D) ADI
FDTD algorithms [4], [5]. For example, the-directional 2-D
ADI FDTD method can be directly reduced from the 3-D ADI
FDTD algorithm [5] and the -directional 2-D ADI FDTD
method can be directly derived from the 3-D ADI FDTD
approach [4]. Nevertheless, it should be noted that the 3-D ADI
FDTD approaches [4], [5] cannot be simply defined as either
the -directional or -directional 3-D ADI FDTD method, as
in the 3-D case, one more direction (i.e., the-direction) is
involved in the updating equations.

It is apparent that when , , and all go to zero, the nu-
merical dispersion relations [i.e., (13) and (16)] of the two 2-D
ADI FDTD methods will convert to the theoretical dispersion
relation

(18)

where is the theoretical wavenumber.
The numerical dispersion relation given in [1] (note: there is

also a printing error in [1, eq. (19)]) is

(19)

As explained earlier, the ADI FDTD algorithm used in [1]
belongs to the -directional 2-D ADI FDTD method. This also
means that (19) relates to the numerical dispersion relation of
the -directional ADI FDTD method and, thus, (13) and (19)
can be compared. By comparing (13) with (19), one can easily
notice the significant difference between them. However, it
should be noticed that (19) was derived under the assumption
that the growth factors of the first and second updating proce-
dures are always identical (i.e., , see [1] for details).
On the other hand, the correctness of the expressions used for

, and (see [1, eqs. (7) and (8)]) in [1] is questionable.
However, the trial solutions of , , and [i.e., (5)] used
in this paper are suitable for all kinds of FDTD methods [3].
This is why we claimed that the numerical dispersion relations
of the 2-D ADI FDTD methods derived in this paper are more
accurate and reasonable than the one given in [1].

III. N UMERICAL DISPERSIONPROPERTIES OF THE

ADI FDTD METHODS

The numerical dispersion characteristics of the ADI FDTD
methods can be studied by solving the dispersion relations given

in (13) and (16). To solve (13) and (16), let us assume that wave
propagates at an anglewith respect to the positive-direc-
tion (i.e., and ), thus the numerical
solution of the wavenumber can be easily obtained with the
Newton’s iteration method for a given set of parameters,

, , and . Particularly, for the -directional ADI FDTD
method, (13) can be solved for the numerical wavenumberat
any wave propagation angleas

(20)
whereas for the -directional ADI FDTD method, (16) can be
solved for the numerical wavenumberat any wave propagation
angle as

(21)

In addition, to evaluate the performances of the ADI FDTD
methods, it is also necessary to compare them with the nu-
merical dispersion property of the conventional 2-D FDTD
method, and the numerical wavenumberfor the conventional
2-D FDTD method can be solved with [3]

(22)

where is the improved estimate of , is the previous
estimate of , and the coefficients , , and used in (20)–(22)
are defined as

(23)

For (20)–(22), a very good initial guess for is , which
is the theoretical wavenumber [as shown in (18)] of the corre-
sponding mode in the medium [3]. Therefore, it is easily shown
that the normalized numerical phase velocity is given by

(24)

where is the final result of the Newton’s iteration method
and is, again, the theoretical wavenumber. Usually,
only two or three iterations are required for convergence.

If within the entire computational region the 2-D FDTD unit
cell is defined by ( ), then the time step used in the
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(a) (b)

(c)

Fig. 1. Normalized phase velocity of thex- andy-directional ADI FDTD methods as functions of the CFLN. Mesh resolution isN = 20. (a)R = 0:5.
(b) R = 1:0. (c) R = 5:0.

standard 2-D FDTD method is bounded by the following CFL
condition [3]:

(25)

To make the discussion easier, we define the ratio
of as the CFL number (CFLN), i.e.,

; and the shape of the 2-D FDTD
unit cell is described by another ratio . In addition,
for the definition of the mesh resolution used in this paper,
we define (where is the operating frequency
and ) as the different mesh resolution of the unit cell.
For example, if we have and for the unit
cell, then the sizes of this unit cell in the- and -directions
are and , respectively.
Moreover, if the mesh resolution is , then the smallest
value of is 0.5 since, to ensure the accuracy of the FDTD
method, the spatial increment (either or ) should not be
greater than . Due to the same reason, the smallest value
of is 0.25 if the mesh resolution is .

The normalized phase velocities (i.e., ) of the - and
-directional 2-D ADI FDTD methods for the cases ,

, and (for all the cases, the mesh resolution
is ) are shown in Fig. 1(a)–(c), respectively. For com-
parison, the normalized phase velocities of the standard FDTD
method are also plotted in Fig. 1. It can be seen from Fig. 1
that, for any values of , the normalized phase velocities of
the standard FDTD method and the two ADI FDTD methods
overlap each other when the CFLN closes to zero, for instance,
they are almost indistinguishable even at [note:
although for the case the normalized phase ve-
locities of the two ADI FDTD methods are not exactly iden-
tical, the difference between them is extremely small and, thus,
only one curve is used to represent the results of both the ADI
FDTD methods, as shown in Fig. 1(a)-(c)]. Since the normal-
ized phase velocities vary very much with the angle, so should
the performance of the FDTD methods be determined or eval-
uated by the maximum absolute value of ( ) within the
entire range of . For example, when the parameters
and are used for the -directional ADI FDTD
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method, the maximum absolute value of ( ) occurs at
, as can be seen in Fig. 1(a). With this criterion, one

can see from Fig. 1 that, for any values of, the best perfor-
mance of the conventional FDTD method is reached when the
value of CFLN is 1.0 and its worst performance appears when
the value of CFLN closes to zero. However, for the ADI FDTD
methods, the situation is more complicated and the performance
is strongly influenced by the value of (i.e., the shape of the
unit cell). For example, for the case , one can see from
Fig. 1(a) that the performance of the-directional ADI FDTD
method is continuously getting worse while CFLN is increased
and, thus, the best performance is reached when CFLN closes
to zero. However, for the-directional ADI FDTD method, the
performance gets better first and then worse while CFLN in-
creases (from 0.05) and the best performance is reached when

, i.e., when the profile of the normalized phase
velocity is symmetric [i.e., ] about
the angle . Therefore, for both the- and -directional
ADI FDTD methods, we may conclude that: 1) if the perfor-
mance always gets worst while CFLN increases, then the best
performance is obtained when the CFLN closes to 0.0 or 2) if the
performance gets better first (and then worse) when the CFLN
increases, then the best performance is reached when the pro-
file of is symmetric about the angle . With the
above remarks for the ADI FDTD methods, one can see from
Fig. 1(b) that, for the case, the best performances of
the two ADI FDTD methods are reached when the CFLN closes
to zero, but for the case , the best performances of the-
and -directional ADI FDTD methods are, respectively, reached
when the CFLN equals to 2.89 and closes to 0.0, as shown in
Fig. 1(c). In addition, it is interesting to note from Fig. 1 that,
for with a certain value, there are some special directions
for the - and -directional ADI FDTD methods: the value of
the normalized phase velocity of the-directional ADI FDTD
method is almost unchanged around the propagation direction

even when CFLN varies; whereas for the-direc-
tional ADI FDTD method, such a special direction is around the
direction . This indicates that, if one wants to use the
recorded field profile to evaluate the performance (as function of
the CFLN) of the ADI FDTD methods (like the manner used in
[2]), then the field profile should not be recorded around these
two special directions; and it is recommended to use the field
profile recorded at the direction or for the evalu-
ation, as the worst performance of both the ADI FDTD methods
always appears at either the or direction.

To further demonstrate that the numerical dispersion errors
caused by the ADI FDTD methods are highly influenced by the
shape and mesh resolution of the unit cell as well as the value of
CFLN, the maximum dispersion errors [i.e., absolute value of
( )] of the two ADI FDTD methods are shown in Fig. 2,
where the results plotted in Fig. 2(a) and (b) are for the mesh
resolution and , respectively. Note that for the
results shown in Fig. 2, we consider only the cases
due to the original purpose of the ADI FDTD method. From
Fig. 2, one can see that, for the case, the performances
of the two ADI FDTD methods are exactly identical. Moreover,

(a)

(b)

Fig. 2. Maximum dispersion errors of thex-directional ADI FDTD method
(solid curves) and they-directional ADI FDTD method (dashed curves) as
functions of the CFLN andR. (a) Mesh resolution:N = 20. (b) Mesh
resolution:N = 40.

for the case, the performance of the-directional ADI
FDTD method is continuously getting worst when the CFLN is
increased. However, for the-directional ADI FDTD method,
the performance is getting better first and then worse while the
CFLN is increased. However, for the case, the situation
for the two ADI FDTD methods is just reversed and the best
performance of the -directional ADI FDTD method appears
at . In addition, it can also be seen from Fig. 2
that, to have a fixed accuracy, the maximum values of the CFLN
allowed to be used for the ADI FDTD methods cannot exceed
certain levels, which certainly indicates that an up limit for the
CFLN exists.

Fig. 3(a) and (b) shows the maximum values of the CFLN
(as functions of and ) allowed to be used in the ADI
FDTD methods when the required accuracy is, respectively,
set to be 1.0% and 0.5%. It can be found from Fig. 3(a) and
(b) that, for the case, the maximum value of the
CFLN allowed to be used in the-directional ADI FDTD
method is always greater than that of the-directional ADI
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(a)

(b)

Fig. 3. Maximum CFLN allowed to be used in thex-directional ADI FDTD
method (solid lines) and they-direction ADI FDTD method (dashed lines) as
functions ofR andN . (a) With accuracy of 1.0%. (b) With accuracy of 0.5%.

FDTD method, and vice versa for the case. This
certainly means that, to increase the efficiency of the ADI
FDTD methods, the -directional ADI FDTD method should
be used for the case and the-directional ADI FDTD
method should be adopted for the case. However,
if for the unit cell we have , then either the - or
-directional ADI FDTD method can be used, as they have the

same performance. This implies that whether the-directional
ADI FDTD method or the -directional ADI FDTD method
should be adopted depends on how the computational space is
meshed. In addition, it can also be found from Fig. 3(a) and
(b) that, for the same mesh resolution, the maximum allowed
value of the CFLN gets greater whenincreases, and for the
same value of , the maximum allowed value of the CFLN
gets bigger when the mesh resolution increases. This indicates
that, compared to the standard FDTD method, the ADI FDTD
method is more efficient (in terms of saving CPU time)only
when the value of is relatively big and/or the mesh resolution
of the smallest unit cell is fairly high. Consequently, it is found
from Fig. 3 that, for the -directional ADI FDTD method,

one can have the following empirical formulas to simply
and quickly determine the maximum allowed values of the
CFLN: the maximum values of the CFLN are, respectively,
bounded by
and when the
required accuracy is set to be 1.0% and 0.5%. The above two
formulas used for the -directional ADI FDTD method work
well for both the and cases. However, as
can be seen from Fig. 3, for the-directional ADI FDTD
method, no such common empirical formulas can be found,
which means that different empirical formulas must be used
for different cases (i.e., with different required accuracies,
as well as different mesh resolutions). For examples, when
the required accuracy is set to be 1.0% for the-directional
ADI FDTD method, the maximum values of the CFLN for
the mesh resolutions and are, respec-
tively, bounded by and

; and while the required
accuracy is set to be 0.5%, the maximum values of the
CFLN are bounded by and

for the mesh resolutions
and , respectively. Finally, it is worth men-

tioning that all the above empirical formulas work well only
when the conditions and (the predicated)
are simultaneouslysatisfied. This means that, for instance, if
the required accuracy is set to be 0.5% for the-directional
ADI FDTD method with , then the smallest value of
allowed to be used in the empirical formula is 3.1.

IV. CONCLUSIONS ANDDISCUSSIONS

In this paper, we first found that the original 2-D ADI FDTD
method can be classified as the-directional 2-D ADI FDTD
method and the -directional 2-D ADI FDTD method due to
the special updating procedure used in the ADI FDTD tech-
nique. Consequently, more accurate and reasonable (comparing
to the one presented in [1]) numerical dispersion relations for
both the ADI FDTD methods were derived. With the numerical
dispersion relations given in this paper, the numerical dispersion
property of the 2-D ADI FDTD methods was comprehensively
studied. Numerical results indicate that the numerical disper-
sion errors caused by the 2-D ADI FDTD methods are highly
affected by the selected time step, shape, and mesh resolution
of the unit cell. Moreover, it reveals that, to keep numerical re-
sults obtained with the 2-D ADI FDTD methods within certain
accuracy, the up limit for the time step exists and, consequently,
it can be numerically determined with the empirical formulas
given in this paper. Furthermore, how the efficiency of the 2-D
ADI FDTD methods can be increased is also briefly discussed.
In addition, it needs to be pointed out here that the strategy used
in this paper for determining the up limit of the 2-D ADI FDTD
methods can also be applied to the 3-D ADI FDTD method, but
for the 3-D case, one extra parameter should be adopted to de-
scribe the shape of the 3-D FDTD unit cell.

From the materials presented in this paper and elsewhere [1],
[4], [6], one can easily realize that the derivation of the numer-
ical dispersion relations and the proof of the numerical stability
for the ADI FDTD method are more difficult than those for
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the standard FDTD method due to the complexity of the ADI
FDTD method. Thus far, two different ways for deriving the
numerical dispersion relations of the ADI FDTD method have
been proposed; and the main difference between these two ways
is the derivation procedure is started from either the original
updating equations (as used in [1] and here for the 2-D case)
or the actual updating equations (as used in [6] for the 3-D
case). Beginning the derivation procedure from the actual up-
dating equations might be more reasonable than that from the
original updating equations. Therefore, as the next step for the
numerical dispersion analysis of the 2-D ADI FDTD methods,
investigations on the derivation of the numerical dispersion re-
lations from their actual updating equations will be carried out.
Obviously, the format of the numerical dispersion relations (of
the 2-D ADI FDTD methods) derived from the actual updating
equations will be more complicated than the one given in this
paper. However, the numerical dispersion relations derived from
the above different ways might be closely related, e.g., they
are convertible from one to another under certain conditions/as-
sumptions or they provide similar results. On the other hand,
the theoretical prediction on the numerical dispersion errors of
the 2-D ADI FDTD methods presented in this paper needs to
be validated with numerical simulations, which is also left for
future work.
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